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Nonequilibrium Thermofield Dynamics 
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The dissipative effects in nonequilibrium thermodfield dynamics are the gauge 
felds of the SU(1, 1) symmetry of the free bosonic thermal theory [SU(2) for 
the fermionic one]. In two dimensions some nonequilibrium systems are 
equivalent to equilibrium systems. An interesting relation exists between the 
equivalence principle of generalrelativity and the assumption, in statistical 
mechanics, of the existence of local subsystems in equilibrium. 

1. INTRODUCTION 

Thermofield dynamics (TFD) (Takahashi and Umezawa, 1975; 
Landsman and van Weert, 1987) is a real-time formulation for finite- 
temperature field theory. One of its advantages is that it makes finite- 
temperature calculations analogous to zero-temperature ones. It has been 
applied to field theory and to string and superstring theories (Leblanc, 1987; 
Ahmed, 1987). Recently TFD has been extended to nonequilibrium systems 
(Umezawa and Yamanaka, 1988; Matsumoto, 1987). This topic is now 
called nonequilibrium thermofield dynamics (NETFD).  Using NETFD,  
both the master equation and the dissipation coefficients are derived from 
the self-consistent renormalization condition. 

In this paper some points related to NETFD are discussed. In Section 
2 a brief introduction to NETFD is given. In Section 3 it is shown that the 
dissipative effects can be described as the gauge field of  an SU(1, 1) [SU(2)] 
symmetry of the free bosonic (fermionic) thermal theory. In Section 4 the 
path integral approach to NETFD is used to show that in two dimensions, 
nonequilibrium effects can be gauged away using reparametrization and 
conformal invariances. Consequently, an equivalence between nonequili- 
brium and equilibrium systems is shown. Furthermore, a relation is estab- 
lished between the equivalence principle of general relativity and the 
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assumption that statistical systems, even nonequilibrium ones, contain sub- 
systems which are in thermal equilibrium. In Section 5 the conclusions are 
summarized. 

2. A BRIEF REVIEW OF NETFD 

In TFD the ordinary vacuum state 10) is replaced by a thermal vacuum 
]0(fl)) such that the thermal average of any operator A is 

(A) # (0(/3)1AI0(/3)) (2.1) 

This is achieved by doubling the operator space (a, a*) into (a, a*, & ~*) 
(the quantum numbers are suppressed for the moment),  such that 

[a, a*]~ = 1, [4, d*]~ = 1 
(2.2) 

[a, ~]~ = [a, a+]~=o 

where 

[A, B]= =- A B  - crBA 

o" = 1 ( -1 )  for bosons (fermions). The operators (a, a*, 4, 8 ' )  are not the 
creation and annihilation operators of 10(fl)); hence, a Bogoliubov transfor- 
mation is used to obtain the thermal creation and annihilation operators 
(~, ~*, ~ ~*) 

~10(/3)) = ~1o(/3)) = o (2.3) 

Henceforth, the thermal doublet notation ~'", (~, a = 1, 2, will be used, where 

E1 = ~, ~2 = ~ i  (1 = C+, (= -of  (2.4) 

The evolution of the thermal doublet is shown to be 

~ ( t )  = E~V(t)~ "v, (~(t)  = f V ( E - l ( t ) ) v ~  (2.5) 

where 

I 
t 

E ( t )  = exp - i  dp [co(p) - hc(p)r3] (2.6) 
ti 

ti is some initial time, o)(t) represents the energy, and K (t) is the dissipative 
coefficient. From (2.5) the evolution of a~( t ) ,  gt~(t) is found in the form 

a~( t )  = ( B - ~ ( t ) E ( t ) ) ~ , ~  , 
(2.7) 

a~(t) = (~(E l ( t )B( t ) )~  
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where B(t) is the matrix of the Bogoliubov transformation 

B ( t ) = [  l+~rn(t)-o- -n( t ) ] l  (2.8) 

and n(t) is the number density 

n( t) = (O(~ )[~'( t)a( t )lO(~ )) (2.9) 

The semi-free Hamiltonian compatible with the evolution equation (2.7) is 
/L(t) 

I21o = d~( t)[o~( t)6 ~ - iP~Y( t) ]aY( t) (2.10) 

, ,jr l+2~rn(t) - 2n ( t )  ] 
P(t) K~t) 

L2o'[l+2o'n(t)]  -[1 +2o'n(t)]_] 

For the case of a field ~(x) the semi-free Hamiltonian is 

= f d3x t~(X)[~(t ,  --iV)~ ='Y _ ip~,(t, -igr)]OY(x) /L(,) 
3 

where 

f 
~ ( x )  = I d3k/ (21r)3/2 a~( t) exp ik .  x 

(2.13) 
t '  

~ ( x )  = J d3k/(27r) 3/2 ~ ( t )  exp - i k -  x 

The master equation and the equations determining w(t) and K(t) are 
determined in NETFD via self-consistent renormalization. The procedure 
is to calculate on-shell self-energy using fully renormatized fields, and hence 
set it equal to zero. This procedure has been used successfully to study 
thermal systems with and without reservoir (Umezawa et al., 1987) to obtain 
both the master equations and the equations determining ~o and K. 

3. DISSIPATIVE EFFECTS AS A GAUGE FIELD 

In all the systems considered so far in NETFD the thermal Lagrangian 
is 

= f d3k {fi~(t)[iOt - w~ - W(~ 1, a 1) + W(a 2, -o~2)} (3.1) :? 
J 
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where W is the interaction term. The unperturbed semi-free Lagrangian is 

I d3k {(t'~(t)[iO,--Wk+ iPk]~a~s (3.2) 

where O)k is the renormalized energy and 

[ 1+2~.~(,) -2nk(t) lK(t)+o.nk(,)[1o.--7] (3.3) 
Pk(t) = L2~[l+2o-nk(t)]  - [1  +2crnk(t)]J 

The covariant derivative D( t )  

D( t) ~ at +/[to(t) - iP( t) ] (3.4) 

indicates that the term ~o - iP can be considered as a gauge field. To explain 
this further, consider the Lagrangian 

=-- I daka~(t)i  O,a~(t) (3.5) Se, 

This Lagrangian is invariant under the transformation 

a s ~ U ~ a  ~, ~t ~ ~ 0 ~  ~ (3.6) 

where 

"q o--[ u'*' 
LU2, u22.1' L-o'u1*= u2*a ] (3.7) 

For r = 1 the group in (3.6) is U(1, 1). For the fermionic case ~r = -1  the 
group is U(2). The Lie algebra of both cases can be expressed using the 
four 2 x2  matrices o -r-= (/, o'), where I is the identity and o" are Pauli 
matrices. 

Gauging the symmetry (3.6), i.e., considering U to depend on t, the 
symmetry can be preserved by replacing the derivative O, by a covariant 
derivative D(t)  defined by 

D( t )  = O, + i4 (t) (3.8) 

where 4~(t) is a Lie algebra-valued function in the representation suitable 
for the operators aS(t) ;  hence 

4~(t) = &~(t)o -~' (3.9) 

As is well known in gauge theories (Huang, 1983), gauge invariance requires 
that (3.6) generalizes to 

a-> U(t)a, a-->aO(t) 
(3.10) 

qb"-> Od)U-  iOO,U 
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Identifying (3.4) with (3.8), one gets 

~b 1= - i K ( n + o ' )  
(3.11) 

d)2=--(  fi + 3Kn + Ko ") 

q53 = iK(1 + 2o-n) + io-ri 

From (3.11) one concludes that the dissipative effects in NETFD can be 
expressed as the gauge field of the SU(1 ,  1) or SU(2) gauge invariance of 
the theory. Notice that only the t direction is gauged; hence, the gauge field 
is a space-time scalar, and consequently there is no field strength. 

4. NONEQUILIBRIUM SYSTEMS IN TWO DIMENSIONS 

I will use the path integral formulation of NETFD (Arimitsu et al., 
1986; Guida et al., 1987). In Guida et aL (1987) a scalar field ~b model has 
been studied. The Hamiltonian is given by 

H(1r, ~b) = l a  (x)[~-2(x) + (V6) 2] (4.1) 

where 

a (x) =/3 (x)| - t) + |  - t,) (4.2) 

/3(x) is the dimensionless, spatially inhomogeneous initial distribution of 
temperature and 19 is the step function. After integrating out the conjugate 
momenta 7r(x), one gets the action 

S =�89 f ddxx/~-ffg c~7 0~r V~b(x) (4.3) 

where 

Id-i 

and Id-1 is the identity matrix in d - 1  dimensions. The formula (4.3) is 
interesting since it shows a definite resemblance between the effect of an 
initial inhomogeneous temperature distribution and that of gravity. An 
analogy between equilibrium temperature effects and gravity has been shown 
in Laflamme (1988). 

Recalling that the equivalence principle in general relativity (Weinberg, 
1972) states that locally one can approximate g ~  by "0~ and applying this 
principle to the system (4.3), I conclude that in nonequilibrium statistical 
systems there are subsystems which are in thermal equilibrium. This is one 
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of the basic hypothesis of both equilibrium and nonequilibrium statistical 
mechanics (Zubarev 1984). However, until now it has been only a hypothesis. 
Now, since the equivalence principle is well founded, the status of the 
hypothesis of the existence of local subsystems in equilibrium becomes a 
well-founded principle thanks to NETFD. 

In two dimensions the action (4.3) takes the form 

S-'-~ f d2xx/-~g ~ O~b 0~r (4.5) 

This action has both reparametrization and conformal invariances 

(4.6) 
g~v ~ h2(x)g~ 

The three parameters ~'~, h are sufficient to set g~ in the conformal gauge 

(g~,) = (v,~,) = [ ;  _01] (4.7) 

Therefore, in two dimensions any inhomogeneity in the temperature can 
be gauged away and the system described by (4.5) is equivalent to the system 

= �89 f d2x ~"~ 0~6 0 v& (4.8) 

l 

S 

which is in thermal equilibrium. 
This argument works, provided the theory described by (4.5) is free of 

conformal anomaly. 
The equivalence between nonequilibrium and equilibrium systems does 

not exist in dimensions other than two, since the system (4.3) does not have 
conformal invariance except in two dimensions. 

This equivalence is also valid for string theory (Schwartz, 1982; Atick 
and Witten, 1988), which is given by the action 

S =�89 f d2xx /~g  ~v O,~X ~ O~,X~ (4.9) 

where X~, is a two-dimensional scalar and a D-dimensional vector. In this 
case the equivalence should be understood only in the two-dimensional 
sense. 

5. CONCLUSION 

The dissipative effects have been shown to be the gauge field of the 
SU(1, 1) symmetry of the semi-free bosonic theory, and similarly for the 
fermionic case, where the gauge symmetry is SU(2). 
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The existence of local subsystems in thermal equilibrium within non- 
equilibrium systems is a principle and not just a hypothesis. 

In two dimensions the effects of an initially spatially inhomogeneous 
temperature distribution in a bosonic system can be gauged away provided 
that the system is free of conformal anomaly. In this case the system is 
equivalent to another system in thermal equilibrium. An analogous situation 
occurs for gravity in two dimensions, where the reparametrization and 
conformal invariances gauge away all the gravitational effects and make 
any system described by the Hilbert action flat. 
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